ANOVA
The discussion surrounding the ANOVA is very important. This is a widely utilized statistical tool. What is the ANOVA? What is the purpose of the ANOVA? What role does variation have in the discussion? What is the purpose of the F distribution?
ANOVA is a set of statistical models which are used in analyzing the differences involving group means and their related procedures for instance variation in the groups. The main purpose of ANOVA in statistical models is the determination of the factors that truly give an account of the variations in a sample data. The variations in ANOVA are divided into independent variables which are nominal while the dependent variables are usually intervals. The role of variations in ANOVA is important in deciding whether a considerable difference exists in three or in a number of sample means. The purpose of the F distribution is determining the sampling distribution in a statistics being used while taking the assumption that the given null hypotheses are true (Doane & Seward, 2012).
Why is the F distribution important? How do you determine if a significant difference exists among the groups in ANOVA? How do you determine differences between the groups in ANOVA?
F distribution is important in ANOVA because this is given as the ratio between two random chi-squared variables. To determine whether a considerable difference exists between the groups in ANOVA, first the F distribution is determined. In determining whether two variances are equal, the variances ratio will follow the F distribution under the assumption of normality. With the assumption of normality of error terms the ANOVA the F statistic is determined. F statistic is the ratio exists which between the group averages variance and the expected group averages variation and this test is used to determine whether the variance is obtained as expected. Accordingly, when the F statistic is determined to be small, this reveals that the observed variations are near the expected variances and there lacks enough evidence to rebuff the null hypothesis which assumes that all group means are equal. Conversely, when the F statistic is considerably large enough to the point of being in the reject region of the fixed levels test, it is evidently clear that the variance under observation is significantly greater than expected (Lind Marchal & Wathen, 2005). As a result, the null hypothesis will be rejected while the alternate hypothesis (at least one group mean is different from the other means) is accepted.
Describe the requirements that must be met before an ANOVA test can be used. Discuss what the researcher should do if one of these requirements is not met.
The requirements which must be met before using an ANOVA test include; the analysis of the variance must assume that the observations on Y (response variable) are independent. The populations which are being sampled must be normal and these populations being sampled must have equal variances. In addition, before performing the ANOVA test, the data must satisfy randomness, independence and normality. When these requirements are not met, the researcher should do the following. It the independence requirement is not met, the researcher will be required to use a non-parametric Test or (Chi-Square). If the normality requirement is not achieved, a non-parametric form of ANOVA test will be carried out while for variance the Wilcoxon signed-rank will be applied (Doane & Seward, 2012).
How could the Analysis of Variance be used to make decisions in a dynamic, competitive business environment? In what situations does your organization use ANOVA? What are some examples that you are familiar with or where ANOVA could be used?
ANOVA is an important tool that is used in making decisions in the present dynamic and competitive business environment. For instance, by testing ANOVA, a businessman would like to identify whether the existing differences in the level of the testing factors (independent factors such as X1, X2, X3
.) have or does not have a considerable effect on the dependent factor (Y). As a result, by identifying the impact that is created, a business can easily adjust resource. For instance, a business can test the impact of the advertising budget on a product. Accordingly, an ANOVA test is constructed with different levels of the advertising budget (X) and sales volume or product revenue (Y) (Lind Marchal & Wathen, 2005). When the testing has significant impact, it means that the advertising budget level have a significant impact on the sales volume and sales revenue. As a result, ANOVA information can be used in making decision on whether to allocate an advertising budget to a product so as to boost up sales (Six Sigma Online, 2013).
What is the role or significance of the Tukey Honestly Significant Difference test?
The Tukey HSD or Honestly Significant Difference test is usually performed after the ANOVA test to establish which sample means are appreciably different from the rest. The ANOVA test is used in identifying whether one or more test means are different from the rest but it does not reveal which ones. The ANOVA null hypothesis always assumes that the means to be equal while the alternate hypothesis simply state that one or more means are different. Accordingly, rejecting the ANOVA null hypothesis, the next step will be identifying the sample means which are different with the application of the HSD tests (Weiers, Gray & Peters, 2008).
References
Doane, D. P., & Seward, L. W. (2012). Applied statistics in business and economics. New York: McGraw-Hill Higher Education.
Lind, D. A., Marchal, W. G., & Wathen, S. A. (2005). Statistical Techniques in Business & Economics, 12th ed. New York: McGraw-Hill/Irwin.Top of Form
Six Sigma Online. (2013). Reasons to use the ANOVA. http://www.sixsigmaonline.org/six- sigma-training-certification-information/articles/reasons-to-use-the-anova.html
Weiers, R. M., Gray, J. B., & Peters, L. H. (2008). Introduction to business statistics. Mason, OH: Thomson/South-Western.
Writing guides statistics (1993-2008). Analysis of variance. Retrieved on 23 Sep. 2009, from http://writing.colostate.edu/guides/research/stats/com5b3.cfm
ANOVA 4
Running head: ANOVA 1
Statistical Methods in Psychology
In your weekly reading, there is a discussion regarding the language of research and statistics. Several key terms are introduced. What are some of these terms (four or five) and what role do they play in statistics? Define the selected terms.
The key terms introduced in the study of research and statistics include mean, standard deviation, hypothesis, hypothesis testing and normal distribution. Mean is the sum of all occurnces divided by the number of observations made, Hypothesis is a pre-assumed information about an occurrence, hypothesia testing involve detaermining the occurrence of something unusual and unpredictable, Normal distributions involves a close examination on how variables under investigation differ in characteristics and standard deviationdefines saple distribution around the mean. In statistics, use of the above terms give the general characteristics of variables and the relationships such variables exhibit among themselves.
What is the difference between a qualitative and a quantitative variable? What role does each type play in research?
Quantitative variable is a veriable that is capable of being expressed in numerical values either in whole numerical values, fractions or in form of decimal numbers. Quantitative measurement give information on actual measurements of variables under investigation. On the other hand, qualitative variable is a variable that can only be expressed through description, for example beauty. Qualitative statistics give information about a proportion or a percentage of occurrence.
What are the four scales of measurement? Define each and give an example. How does each fit into statistics?`
The four scales of measurements as used in statistics are: norminal scales, ordinal scales, interval scales and ratio scales. Norminal scales take into account numbers that account for presence, for example, American idol numbers worn on a singer’s cloth. Ordinal scales identifies ranks or orders of items under scaling, for example, ranks of workers in a company. Interval scale accounts for the difference in measurement that exists between variables. An example is temperature scaling where numerical values are user to represent frequency of occurrence between observations. Ratio scale describes the relationship or comparison that can be made from two or more observations. In ration scale, one mearsurement is a representative of another and can be given as an absolute zero, for example, time and money.
Application of scales of measurement varies with the information that is required. For example, ordinal measurement may be used in business where one ranks goods according to the level of satisfaction, ratio mearsurements can be used to give the level of comparison between different goods based on their relative prices, interval scale may be used to determine the frequency with which a particular good is realeased into the marker or leaves the market while the norminal scale would be used to determine the actual number of purchases made by different consumers. All these scales play part in various fileds of statistics based on the researchers area of interest.
There were three types of variables discussed in the chapter. What are the three and what are their roles in research?
The three types of variable discussed in the chapter are dependent variables, qualitative variables and quantitative varable. In research, the use of dependent variables establish the fuctional realationship that exists between dependent and independent variables and how a slight change in independent variables causes a negative or a positive change on the dependent variable. The use of qualitative variable give an analysis of proportion of variables that share certain characteristics. On the other hand, the use of quantitative variable in a research give definite values or numbere that can be used to describe a phenomenon.
What are the differences between descriptive and inferential statistics?
Descriptive statistics involve the use of calculated measures of central tendencies like mean mode median geometric mean and harmonic mean to describe the characteristic of a population or sample and their probabiliatic occurrences. On the other hand, inferential statistics involve making a conclusion on the characteristics of a population based on formulated hypothesis. Under inferential statistics, one may reject or accept certain formulated hypothesis. That is to say, under inferential statistic, conclusion a bout a population or sample depends entirely on the researcher’s knowledge an his or her view of the subject under consideration. Inferentian statistcs involves testing hypothesis using methods such as chi-square test and student’s t-distribution test for functional independence.
How would you define research? What is the purpose of business research? How has the Internet changed the quality and quantity of research?
A research may be defined as a systematic inquiry that allows for discovery and generation of new knowledge. The main purpose of a research is to provide a solution towards a problem or to critically examine established theories for criticism and adjustments. A business research is a research conducted on markets, competitors and suppliers by a particular business or organization and the main purpose is to provide solutions to problems facing the business or organization. Internet plays a big role in facilitating research processes. In one way, internet contributes to the possility of obtaing high quality, accurate, measurable and sufficient facts and data. Given that the use of internet is fast and efficient, it allows for collection of variety of information and a decision is thus made based on large quantity of data.
To what extent do you utilize statistics in your present position? What role do they service you and your present work/station position? What are your feelings regarding statistics?
In any position a person assumes in work station, there is need to be factual in decision making. The use of statistics is very helpful in critical examination of problems, and based on ideologies and actual facts collected from the field, a decision maker can scientifically evaluate and make accurate and judgemental decisions that will help solve the defined problem. The use of statistics in everyday life makes a person a critical examiner and an evaluator of issues before making an influential decision. Decisions made based on facts and figures are not disputable. The general feeling about statistics is that, it is a proper tool towards proplem solving and decision making within and outside any organization.
N/A 5
Running Head: N/A 1
Statistical Procedure
Statistical Procedure
The study was a cross-sectional study to access blood transfusion reaction in children and the factors that are involved. The data constituted of 57 children, collected from a population of 1226children, who underwent blood transfusion between January and July 2011. The main aim of the study is to study the prevalence of blood transfusion reactions among children and factors that may be causing the reactions. In this study, prevalence of blood transfusion was the dependent variable the factors under study were the independent variable. Data entry was done in excel sheet and analysis was done using predictive Analytics software. Descriptive and chi square test were done to check for significance difference at 5% level. The results revealed that there was prevalence of blood reaction in relation to age range and type of blood component.
The data was analyzed using non-parametric test, where the independent variable was the prevalence of the blood reaction among the children and factors like age and blood component were the independent variables. Both the dependent and independent variables were measured using nominal data as the level of measurement. For instance, it was observed whether reaction was dependent on age or not. This means that for all the variables the observation on whether or it affected the blood reaction. The sample size was very small and non- random method was used to collect data, therefore non-parametric tests were the most appropriate. During analysis, chi-square tests generates p-values, which are tested on 0.05 level of significant. When the p-value generated is less than 0.05 (P<0.05), then the factor being tested is significantly significant. In this study, only two factors under investigation had P<0.05 and this were the only factors that could be associated with blood reaction in children.
References
Pedrosa, A.K, Pinto, F.J & Deus, G.M. (2013, June 20). Blood transfusion reactions in children: associated factors. Pubmed.gov. doi: 10.1016/j.jped.2012.12.009
STATISTICAL PROCEDURE 3
Running Head: STATISTICAL PROCEDURE 1
Date Population trends for women and children
There are approximately 52 million Latinos in the united state according to the Pew Hispanic analysis. This is about 17 percent of the United States population that is up from the 13 percent figure that was there in 2000. In the period of 2000 and 2011, the Hispanic population has in increased by 48%. Downs Barbara indicates that since immigration has slowed down, the biggest cause of the increased Latino population is births. As a result, the foreign born Latinos in the US have dropped by 10% to contribute only 36% of the Hispanic population in the US. There are more women and children Latinos in the US than the male gender. About 55% of the Latino in the US resides in three states that include California, Texas and Florida. While 28 percent of all the Latinos live in California, 7 percent live in New York
Table 1 distribution of the Latino population in the US states in millions
Source: Pew Hispanic Centre.
According to the study by Haines, Dawn E., and Brian Greenberg, the number of the Hispanic owned businesses will double to about 3.2 million from 1.7 million businesses that were operational in 2002. This increase is a reflection of the rapid increase of the Latino population in the United States.
Table 2 characteristics of the Latino population in the USA
Characteristics of U.S. Hispanics and the total U.S. population, 2005CharacteristicAll U.S. HispanicsTotal U.S. population(including Hispanics)NumberAs apercentageof totalNumberAs apercentageof totalDemographic characteristicsTotal41,926,302100.0288,398,819100.0SexMale21,507,03151.3141,363,81149.0Female20,419,27148.7147,035,00851.0AgeUnder 1512,356,97329.560,614,92221.015246,897,73416.538,853,33113.5256119,938,48947.6146,637,23750.862741,831,8644.425,852,4429.07584716,9641.712,479,7944.385 or older184,2780.43,961,0931.4Marital statusMarried14,928,19935.6121,593,81342.2Widowed987,8642.413,727,2744.8Divorced2,235,7075.323,277,1978.1Separated1,152,9942.85,058,3191.8Never married or younger than age 1522,621,53854.0124,742,21643.3Source: Bureau of Labour statistics
Immigration and Naturalization Service, Office of Policy and Planning indicate that there are about 787,914 Hispanic women owned businesses in the US. This is an increase of about 45.7% of the number of business owned by the Latino women in 2002. While the businesses owned by men increased by 84.1% in the period of 1997 to 2007, the number of Latino business owned increased by 133.3 percent in the same period. All the firms owned by the Latino women in USA have a receipt value of 55.7 billion. This is an increase of 57.8% from 2002. When it comes to employment, 93.3% of the firms owned by Latino women don’t employ anybody else apart from the family members. United Nations argue that It is only the remaining 6.7 percent of the business that have paid employees that total to 363,430 in the whole country. The study found that 10.2 percent of all the business owned by women in the USA is owned by the Hispanic.
Smith, Karen E., David Cashin and Melissa Favreault indicate that while the median of the household income in the US is $ 50,000, on the other hand the median for the native Latino is $42,400 and $35,000 for the foreign born Latinos. Latinos will account for more than three quarters of the labour force in the period from 2011 to 2020.
Table 3 showing the earnings of the Latinos in comparison to the entire population
Earnings of persons aged 16 or older bTotal20,710,142100.0156,958,710100.0$116,6288,838,31042.751,538,08432.8$16,62936,9527,667,73137.049,617,24631.6$36,95359,1242,669,33412.929,485,72418.8$59,12589,9991,041,1855.015,616,2699.9$90,000 or more493,5822.410,701,3876.8Source: Census Bureau
Haines, Dawn E., and Brian Greenberg argue that the poverty rate of the Hispanic population is higher than that of the overall population being at 26% compared to the overall poverty rate of the Americans which is 16%. Research by Sears, James, and Kalman Rupp has found that 22% of the Latino population receive food stamps compared to the thirteen percent of the total population. Close to thirty percent of the Hispanic population in the united state lack health Insurance this is very high rate compared to 15% of the all American population that lack health insurance. As a result of the great recession, median household wealth among the Hispanic population experienced a decline of about 58% from 2005 to 2007. The consequence was that the children of Latino surpassed the black and the white children in living below poverty for the first time.
Table 4 poverty levels among the Latinos
Poverty among persons aged 15 or older cLatino numbers%Latino supplementary incomeAs a % of the total All the US Latinos% of the totalTotal2,485,175100.0657,247100.029,569,329100.0Below 100%504,22020.3283,99243.25,766,50919.5100% to 124%240,8399.781,71612.42,191,8047.4125% to 149%205,1888.351,0497.82,082,9987.0150% or above1,534,92861.8240,49036.619,528,01866.0Source: Social Security Administration
Ramirez Roberto posited that the percent of the Latinos who have completed diploma have increased from 52% to the 63% in 2011. In addition, the number of Latinos who have enrolled to college has improved from 20% to 33 percent of the Latinos who are aged between.
Table 5 level of education among the Latinos
Educational attainment of persons aged 25 or older aNo. in all Hispanics%No. Of all US population%Total22,671,595100.0188,930,566100.0No high school diploma9,188,48040.529,780,73815.8High school graduate only6,121,19627.055,907,09329.6Some college but no degree3,420,19615.137,922,76420.1Associate’s degree1,157,1355.113,942,2687.4Bachelor’s degree or higher2,784,58812.351,377,70327.2Source: Census Bureau, 2005
Works Cited
Census Bureau, Annual estimates of the population by sex, race and Hispanic or Latino origin for the United States: April 1, 2000 to July 1, 2005. 2006. Available at
Census Bureau, Annual Statistical Supplement to the Social Security Bulletin, 2005. Washington, DC: Social Security Administration. 2005.
Downs, Barbara. Fertility of American women, June 2002. Current Population Reports, P-20- 548 (October). 2003.
Gibson, Campbell, and Kay Jung. Historical census statistics on population totals by race, to 1990, and by Hispanic origin, 1970 to 1990, for the United States, regions, divisions, and states.
Haines, Dawn E., and Brian Greenberg. Statistical uses of Social Security administrative data. ASA proceedings of the Joint Statistical Meetings, pp. 1138-1145. American Statistical Association (Alexandria, VA). 2005.
Immigration and Naturalization Service, Office of Policy and Planning. Estimates of the unauthorized immigrant population residing in the United States: 1990 to 2000. 2003
Ramirez, Roberto. We the people: Hispanics in the United States. Census 2000 Special 2004.
Sears, James, and Kalman Rupp, Exploring Social Security payment history matched with the Survey of Income and Program Participation. Federal Committee on Statistical Methodology Research Conference 2003.
Smith, Karen E., David Cashin and Melissa Favreault. Modelling income in the near term 4: Revised projections of retirement income through 2020 for the 19311960 birth cohorts. Urban Institute, Washington, DC. 2005.
Social Security Administration. Annual Statistical Supplement to the Social Security Bulletin, Washington, DC: Social Security Administration.2009.
United Nations, World Population Prospects, 2005. New York: United Nations, Population Division, Department of Economic and Social Affairs. 2005.
Surname 1
Correlation
Statistics has many applications, one of which is showing the relationship of two variables. One can either plot the variables in a scatter diagram to find the relation of the variables or calculate the correlation coefficient of the variables. If one calculates the correlation coefficient of two variables, he will automatically understand how the variables relate to one another. This article will depict both methods of determining the relationship of two variables.
Correlation coefficient
The correlation coefficient is a statistical measure of precisely determining the relationship between two variables (Nevid, 2012). The coefficient determines the relationship in terms of the magnitude and the direction of the relationship of the variables (Nevid, 2012). The magnitude of two variables determines how strong the relations between the variables is while the direction measures whether the relationship of the two variables are positive or negative.
A negative correlation indicates that the two variables are moving in the opposite direction while a positive correlation indicates that the variables are moving in the same direction. The co-efficient of correction ranges from + 1 to 1. This range is divided into values that represent a positive correction (given by 0 minimum to +1 maximum) and a negative correlation (given by 0 minimum to -1 maximum) (Nevid, 2012).
How to calculate correlation coefficient using an example
Question: find the correlation between sat scores and scores for the final exam.
NSAT SCORES XFINAL EXAM SCORES YX2Y2XY1595683540254624404602520552704003025286003715655112254225464754405421640251764170105680644624004096435206490452401002025220507565563192253136316408580593364003481342209615563782253136344401043542189225176418270114403819360014441672012515502652252500257501338037144400136914060145104226010017642142015565533192252809299�4�5����”X� �8�0�1�0��”Y� �7�7�2��”X�2� � �4�4�0�7�8�0�0��”Y�2� �4�1�1�6�2��”X�Y� �4�2�4�5�8�0���
�T�h�e� �v�a�r�i�a�b�l�e�s� �f�r�o�m� �w�h�i�c�h� �a� �r�e�l�a�t�i�o�n�s�h�i�p� �n�e�e�d� �t�o� �b�e� �d�e�r�i�v�e�d� �a�r�e� �s�a�t� �s�c�o�r�e�s�(�x�)� �a�n�d� �f�i�n�a�l� �e�x�a�m� �s�c�o�r�e�s� �(�y�)�.� �T�h�e� �t�h�i�r�d� �a�n�d� �t�h�e� �f�o�u�r�t�h� �c�o�l�u�m�n� �y�o�u� �a�r�r�i�v�e� �a�t� �b�y� �s�q�u�a�r�i�n�g� �t�h�e� �v�a�l�u�e� �o�f� �x� �a�n�d� �y�.� �T�h�e� �l�a�s�t� �c�o�l�u�m�n� you arrive at multiplying the values of x and y. The last row of the table is the summation of the data entered in their respective column. Once you fill the table above, you use the formula below
WHERE: r is the correlation coefficient (Nevid, 2012)
n is the number of variables (Nevid, 2012)
Therefore, the correlation for the above question will be given by:
r =
r = 0.9
����������������������������������������������������������������������������������������������������������������������+��6��7��K��W�� �� ��3 ��= ��B ��M ��N ��Z ��a ��k ��t �� �� ��¥ ��¶ ��ß ��ê ��
��
��&
��G
��R
��
��
��
��ñáѳ³³³³³³³³¤³
vgvgX����������������������h²ó�h)ý�CJ�OJ��QJ��aJ��h²ó�he|�CJ�OJ��QJ��aJ��h²ó�hZÅ�CJ�OJ��QJ��aJ��h×!í�hZÅ�5CJ�OJ��QJ��aJ�h×!í�hKYw�CJ�OJ��QJ��aJ��h×!í�he|�CJ�OJ��QJ��aJ��h×!í�hZÅ�CJ�OJ��QJ��aJ��h×!í�h
ð�CJ�OJ��QJ��aJ��h×!í�hm�5CJ�OJ��QJ��aJ�h×!í�hKYw�5CJ�OJ��QJ��aJ�h×!í�h^IB�CJ�OJ��QJ��aJ�������������������� ��
������+��7��
��&
��÷��
��Ú
��+��,��-��.��0��ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������ô������������è������������à������������è������������è������������à������������à������������à������������Ò������������Ò������������Ò����������������������$¤��$If���a$gd×!í����dà�gd×!í����Ðdà�`Ðgd×!í��
��$dà�a$gd×!í��
��¨
��®
��¹
��Õ
��í
��ô
��÷
��&��(��4��6��9��:��C��o��x��
����¯��¶��»��Ç����
��¥��®��°��
��
��
��
��
��Ú
��âÓÄÓÄÓÄÓµâÄÓ¦¦¦¦¦¦¦¦j¦Z�����������h²ó�he|�5CJ�OJ��QJ��aJ�:h×!í�hÏ<�B*CJ�OJ��PJ�QJ��aJ�fH�ph����qÊ
���ÿÿÿÿ����h×!í�hÏ<�CJ�OJ��QJ��aJ��h×!í�he|�CJ�OJ��QJ��aJ��h×!í�hZÅ�CJ�OJ��QJ��aJ��h²ó�h)ý�CJ�OJ��QJ��aJ��h²ó�he|�CJ�OJ��QJ��aJ��h²ó�hZÅ�CJ�OJ��QJ��aJ��:h²ó�h)ý�B*CJ�OJ��PJ�QJ��aJ�fH�ph����qÊ
���ÿÿÿÿ���!Ú
��*��+��,��0��Q��R��S��T��U��V��Z��[��]��ñåÖ¼¢mRRK6���������������������������������������)h×!í�h÷F*�B*CJ�OJ��PJ��QJ��aJ�ph����h²bÞ�h÷F*��5hs/�h÷F*�5>*B*CJ�H*OJ��PJ��QJ��aJ�phÀPM�5h×!í�h÷F*�5>*B*CJ�H*OJ��PJ��QJ��aJ�phÀPM�2hs/�h÷F*�5>*B*CJ�OJ��PJ��QJ��aJ�phÀPM��2hs/�h÷F*�5>*B*CJ�OJ��PJ��QJ��aJ�ph�����2h×!í�h÷F*�5>*B*CJ�OJ��PJ��QJ��aJ�ph�����h×!í�h×!í�CJ�OJ��QJ��aJ��he|�CJ�OJ��QJ��aJ��h×!í�hs/�CJ�OJ��QJ��aJ�
0��=��Q��T��W��Z��ñ������������ñ������������ñ������������ñ������������ñ�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��Z��[��]��a��d��:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kd����$$If���l�XÖ�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�Gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�G<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*��]��d��v��w��y����’��������®��¯��±��¸��Ê��Ë��Í��Ô��æ��ç��é��ð��������������!��(��:��;��=��D��V��W��Z��a��s��t��w��~������������®��±��¸��Ê��Ë��Î��Õ��ç��è��ë��ò��êÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕιêÕι¢�����������������������������������,hs/�h÷F*�>*B*CJ�OJ��PJ��QJ��aJ�ph�����)h×!í�h÷F*�B*CJ�OJ��PJ��QJ��aJ�ph����h²bÞ�h÷F*��)hs/�h÷F*�B*CJ�OJ��PJ��QJ��aJ�phÀPM�)hs/�h÷F*�B*CJ�OJ��PJ��QJ��aJ�ph�����9d��k��p��v��w��ñ������������ñ������������ñ������������,�����������������������������Ä��kd��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í��w��y��}��������’��ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��’����������:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kd$��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*����£��¨��®��¯��ñ������������ñ������������ñ������������,�����������������������������Ä��kd6��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í��¯��±��µ��¸��¿��Ä��Ê��ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��Ê��Ë��Í��Ñ��Ô��:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kdH��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*��Ô��Û��à��æ��ç��ñ������������ñ������������ñ������������,�����������������������������Ä��kdZ��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í��ç��é��í��ð��÷��ü����ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í�������� ����:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kdl��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*����ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í����!��%��(��/��4��:��ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��:��;��=��A��D��:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kd��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*��D��K��P��V��W��ñ������������ñ������������ñ������������,�����������������������������Ä��kd¢ ��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í��W��Z��^��a��h��m��s��ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��s��t��w��{��~��:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kd´
��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*��~��
��������ñ������������ñ������������ñ������������,�����������������������������Ä��kdÆ��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í����������¢��§����ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í����®��±��µ��¸��:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kdØ��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*��¸��¿��Ä��Ê��Ë��ñ������������ñ������������ñ������������,�����������������������������Ä��kdê
��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í��Ë��Î��Ò��Õ��Ü��á��ç��ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��ç��è��ë��ï��ò��:������������,������������,������������,������������������������������$¤��$If���a$gd×!í��Ä��kdü��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*��ò��ù��þ����
��ñ������������ñ������������ñ������������,�����������������������������Ä��kd��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*���$¤��$If���a$gd×!í��ò����
������”��*��.��2��4��D��H��J��L��X��`��n��p��r��ð����éâË´Ë´ËË
Ën
Ë
â_P@������������������������h×!í�h¤|B�CJ�OJ��QJ��aJ�h×!í�h¤|B�CJ�OJ��QJ��aJ��h×!í�hZÅ�CJ�OJ��QJ��aJ��,h×!í�h÷F*�5B*CJ�OJ��PJ��QJ��aJ�phÀPM��,hs/�h÷F*�5B*CJ�OJ��PJ��QJ��aJ�phÀPM��/h×!í�h÷F*�5B*CJ�H*OJ��PJ��QJ��aJ�ph����,hs/�h÷F*�5B*CJ�OJ��PJ��QJ��aJ�ph�����,h×!í�h÷F*�5B*CJ�OJ��PJ��QJ��aJ�ph�����h²bÞ�h÷F*��,hs/�h÷F*�>*B*CJ�OJ��PJ��QJ��aJ�phÀPM�
������*��D��X��n��ñ������������ñ������������ñ������������ñ������������ñ������������ñ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������$¤��$If���a$gd×!í��n��p��r��Æ��È��:������������2������������&������������2�������������������Ðdà�`Ðgd×!í����dà�gd×!í��Ä��kd ��$$If���l�,Ö�ªæ.ü”�ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�gÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ�g ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
t�� ö 6ö��ÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4Ö���4Ö�
l�BÖaöîpÖ<ÿÿÿÿÿÿÿÿÿÿ���ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ�����ÿ���ÿ��yt÷F*����¸��Å��Æ��Ç��È��É��ð��ò��þ��¤��gd^IB����Ð0ýdà�^Ð`0ýgd×!í��
��$dà�a$gd×!í����Ðdà�`Ðgd×!í����dà�gd×!í��w2
Running head: CORRELATION 1
Business Statistics:
Question 1: Sampling refers to a process of choosing the suitable sample that represents the population. It is applicable when the population size is large, but inapplicable when the population size is small. Researchers use it to reduce costs when the available resources are insufficient to evaluate the entire population. Some of the factors to consider when sampling include the sample size, bias, and representation of the population of the sample. Potential problems with sampling include bias, patterns, and lack of randomness.
Question 2: From a general point of view, the central limit theorem is a mathematical theorem that states that the means of randomly selected large numbers of samples tend to follow a normal distribution. This is so in real life’s event because real life’s events share some common properties among them. They tend to obey the central limit theorem when the sample size exceeds twenty-five. For example, individual’s heights share some common properties with each other thereby share same characteristics with the central limit theorem. Estimation is an inferential tool that quantifies the sample’s effects on the population thereby it is an important aspect in statistics because it gives an idea of what populations look like. Confidence intervals qualify estimations making them meaningful.
A systematic sampling might be biased if its list of sampling follows a pattern. This might be the case if the eligible cases in the sample are either defective or have some characteristics that are prone to bias (Weisberg 2005). For example, an alphabetical list of the names might be biased because of the cultural origins of those names. On the other hand, both estimation and confidence interval play significant roles in the determination of the sample sizes. Confidence interval specifies its width while estimation determines its error.
Question 3: confidence intervals are ranges of values defined in researches and they define the probability that the estimates’ parameters will lie within those ranges. They qualify estimates; hence, make them meaningful.
Question 4: When the judge rejects the null hypothesis that presumes the innocence of the defendant and accepts the alternative hypothesis that presumes otherwise, a type I error occurs.
Question 5: A small sample is usually applicable in drawing inferences about a large population when it is representative, random, and unbiased. In this case, it represents the population in totality. On the other hand, a t-test is usually applicable to small populations because mostly they do not assume normal distributions and their standard deviations are usually unknown. Therefore, it becomes necessary to use t-tests for small populations to determine their variances first and later apply them (Lind, Marchal, & Wathen, 2012).
Question 6: With regard to a sample of 1,100 and 572 voters willing to vote for the current mayor, my initial hunch is that the current mayor can either win or lose the elections. T�h�i�s� �i�s� �b�e�c�a�u�s�e� �t�h�e� �p�r�o�b�a�b�i�l�i�t�y� �l�i�e�s� �w�i�t�h�i�n� �t�h�e� �p�r�o�b�a�b�i�l�i�t�y� �o�f� �0�.�5� �w�h�e�r�e�b�y� �a� �w�i�n� �o�r� �a� �l�o�s�s� �i�s� �p�o�s�s�i�b�l�e� �f�o�r� �t�h�e� �c�u�r�r�e�n�t� �m�a�y�o�r�.� �B�a�s�e�d� �o�n� �t�h�e� �s�a�m�p�l�e�,� �
�P�=�5�7�2�/�1�1�0�0� �w�h�i�c�h� �e�q�u�a�l�s� �0�.�5�2�
�q� �=� �1�-�p� �=� �1�-�0�.�5�2� �=� �0�.�4�8�
�S�t�a�n�d�a�r�d� �e�r�r�o�r� �(�S�E�)� �=� �” �(�p�q�/�n�)� �=� �” �(�0�.�5�2�*�0�.�4�8�/�1�1�0�)� �=� �0�.�0�1�5�1�;�
�N�u�l�l� �h�y�p�o�t�h�e�s�i�s� �(�H�0�:� �p�=�0�.�5�)� �w�h�i�l�e� �t�h�e� �a�l�t�e�r�n�a�t�i�v�e� �h�y�p�o�t�h�e�s�i�s� �(�H�1�:� �p�>� �0�.�5�)�;�
�Z� �=� �(�p�-�p� )�/�0�.�0�1�5�1� �=� �1�.�3�2�4�5�;�
�P� �(�z�>�1�.�3�2�4�5�)� �=� �0�.�0�9�3�;� �f�r�o�m� �t�h�i�s� �r�e�s�u�l�t�s�,� �I� �c�o�n�c�l�u�d�e� �t�h�a�t� �s�i�n�c�e� �0�.�0�9�3�>�0�.�0�5� �I� �s�h�o�u�l�d� �r�e�j�e�c�t� �t�h�e� �n�u�l�l� �h�y�p�o�t�h�e�s�i�s� �t�h�e�r�e�b�y� �c�o�n�c�l�u�d�e� �t�h�a�t� �t�h�e� �c�u�r�r�e�n�t� �m�a�y�or cannot win the forthcoming election with a 95% confidence level.
Question 7: In statistics, the statement that a population belongs to a family of distribution implies that a population shares some common and unique characteristics with other populations. For example, when we refer to an exponential family of populations, we refer to populations that share similar characteristics. This statement is important in statistics because it helps in distinguishing populations in relation to their characteristics (Doane, & Seward, 2012).
Question 8: one of the research problems I would expect at my station is a market research. I would apply probability to determine the likelihood of customers buying our products as opposed to buying from our competitors.
Question 9: Probability is an estimation of the likelihood of the occurrence of an event. Therefore, it is an important concept in statistics that helps in making decisions regarding populations. It fits in decision-making processes by allowing statisticians to evaluate the reliability of their conclusions concerning populations when they have samples’ information.
References
Doane, D., & Seward, L. (2012). Applied statistics in business and economics. New York: McGraw-Hill Higher Education.
Lind, D., Marchal, W., & Wathen, S. (2012). Statistical techniques in business & economics. New York, NY: McGraw-Hill/Irwin.
Weisberg, H. (2005). The total survey error approach: A guide to the new science of survey research. Chicago: University of Chicago Press.
�������������������*��+��.��4��5��A��a��w��~����Ã��È��Ö��â��÷��ü�� �� ��’ ��ôèôÙÊÙô»Ù¯ô£ufuWuHuHuHuHf�����hª�h-aÎ�CJ�OJ��QJ��aJ��hª�h^p�CJ�OJ��QJ��aJ��hª�hÕiÔ�CJ�OJ��QJ��aJ��hª�h^@�CJ�OJ��QJ��aJ��hª�h¼%Ã�5CJ�OJ��QJ��aJ�hª�hi0�CJ�OJ��QJ��aJ��hi0�CJ�OJ��QJ��aJ��hezÝ�CJ�OJ��QJ��aJ��hª�h=F�CJ�OJ��QJ��aJ��hª�hb9r�CJ�OJ��QJ��aJ��hª�hezÝ�CJ�OJ��QJ��aJ��h z-�CJ�OJ��QJ��aJ��hª�CJ�OJ��QJ��aJ����������������+��,��-��.��/��0��1��2��3��4��5��M
��j
��’��s��/��Ld;�CJ�OJ��QJ��aJ��hª�h h�CJ�OJ��QJ��aJ��h²P¸�CJ�OJ��QJ��aJ��hª�hâ’·�CJ�OJ��QJ��aJ��hª�hÕiÔ�CJ�OJ��QJ��aJ��hâ�CJ�OJ��QJ��aJ�ç
��è
��������U��[��`��x��{��|��}������Ó��Ô��á��í��î��������CJ�OJ��QJ��aJ��hª�hòc�CJ�OJ��QJ��aJ��hª�hzI�CJ�OJ��QJ��aJ��hª�h�1N�CJ�OJ��QJ��aJ�t��¾��Ç��Í��Ð��Ú��ï��ð��
��
��(
��P
��V
��W
��h
��i
��j
��v
��¨
��²
��¹
��»
��â
��æ
��ç
��è
��ê
��ö
��ù
��ú
����
��ñåñÙñÊñ¾ñ¾¯£¾¯¾y¾yj[y[£jyj[j�����������������������hª�hÔñ�CJ�OJ��QJ��aJ��hª�hZ�CJ�OJ��QJ��aJ��hª�hw½�CJ�OJ��QJ��aJ��hª�h^j�CJ�OJ��QJ��aJ��h’3P�CJ�OJ��QJ��aJ��hâ�CJ�OJ��QJ��aJ��hª�h)|
�CJ�OJ��QJ��aJ��hk,�CJ�OJ��QJ��aJ��hª�h5·�CJ�OJ��QJ��aJ��h¢?,�CJ�OJ��QJ��aJ��h z-�CJ�OJ��QJ��aJ��hª�hæ&;�CJ�OJ��QJ��aJ�
������-��:��>��?��N��O��}��~��������®��½��¾��¿����V��X��~����¨��¬��²��´��b��’��¢��¾��Î��Ð���� ��¢��Ü��ñáѶ§§§¶¶zkzzkMkM�������������������������hª�hcl �CJ�OJ��QJ��aJ��hª�hN�CJ�OJ��QJ��aJ��hª�hqe�CJ�OJ��QJ��aJ��hª�h¿%3�CJ�OJ��QJ��aJ��hª�hö;a�CJ�OJ��QJ��aJ��hª�h©�CJ�OJ��QJ��aJ��hª�hÿ6º�CJ�OJ��QJ��aJ��hÚ*t�CJ�OJ��QJ��aJ��hª�hC ¬�CJ�OJ��QJ��aJ��hª�h¼%Ã�5CJ�OJ��QJ��aJ�hª�h}|�5CJ�OJ��QJ��aJ�hª�hÈ=�CJ�OJ��QJ��aJ���¢��Ú��E����ÿ��p��q��r��s��t��u����÷��t��ÿ�����8��8��8��8��8��8��8��8��÷������������÷������������÷������������÷������������÷������������÷������������ì������������ì������������ì������������ì������������ì������������ì������������Ü������������Ü������������Ü������������÷������������÷������������Ò������������Ð������������Ò������������Ð������������Ò������������Ð������������Ò�������������������� ��dð��¤��gd=F����Ð0ýdà�^Ð`0ýgdª��
��$dà�a$gdª����dà�gdª��Ü��Þ��ä��ô��������l����
������D��E��P��Q��s��«��±��Ä��Ñ��Ü��ë����”��ñâÓñÓñÓñÄñ¸ñ©{l]N]?]l]��hª�hsyÔ�CJ�OJ��QJ��aJ��hª�h½E�CJ�OJ��QJ��aJ��hª�hq4�CJ�OJ��QJ��aJ��hª�hó#�CJ�OJ��QJ��aJ��hª�h³É�CJ�OJ��QJ��aJ��hª�h¼%Ã�CJ�OJ��QJ��aJ��hª�h¼%Ã�5CJ�OJ��QJ��aJ�hª�h ,�CJ�OJ��QJ��aJ��hq�CJ�OJ��QJ��aJ��hª�h2.ÿ�CJ�OJ��QJ��aJ��hª�h×
K�CJ�OJ��QJ��aJ��hª�hcl �CJ�OJ��QJ��aJ��hª�hi
�CJ�OJ��QJ��aJ�”��%��7��F������ò������������&��’��;��C��F��L��u��ú��û��ü��ý��ñâñâÓĸ¬Ä~n_P_¬_PÄAÓ����������������hª�hkZ¸�CJ�OJ��QJ��aJ��hª�háSÐ�CJ�OJ��QJ��aJ��hª�hÈ|u�CJ�OJ��QJ��aJ��hª�hÈ|u�5CJ�OJ��QJ��aJ�hª�h¼%Ã�5CJ�OJ��QJ��aJ�hª�h¼%Ã�CJ�OJ��QJ��aJ��hª�hPÑ�CJ�OJ��QJ��aJ��h<r�CJ�OJ��QJ��aJ��h(,È�CJ�OJ��QJ��aJ��hª�h²hd�CJ�OJ��QJ��aJ��hª�hó#�CJ�OJ��QJ��aJ��hª�hq4�CJ�OJ��QJ��aJ��hª�hsyÔ�CJ�OJ��QJ��aJ�ý��ÿ�� ����Y��c��Ã��3��J��_��a��o��p��u������ ��Ì��#��Q��s��t����×��ÿ�����ñáÒ÷¨{o`{`N`N`B`N`{���hy,�CJ�OJ��QJ��aJ��”hª�hy,�6CJ�OJ��QJ��]aJ��hª�hy,�CJ�OJ��QJ��aJ��hi0�CJ�OJ��QJ��aJ��hª�h=F�CJ�OJ��QJ��aJ��hª�hÂO¯�CJ�OJ��QJ��aJ��hª�hS�CJ�OJ��QJ��aJ��hª�h”�B�CJ�OJ��QJ��aJ��hQ^�CJ�OJ��QJ��aJ��hª�hÈ=�CJ�OJ��QJ��aJ��hª�h¼%Ã�CJ�OJ��QJ��aJ��hª�h¼%Ã�5CJ�OJ��QJ��aJ�hª�h³É�CJ�OJ��QJ��aJ�
BUSINESS STATISTICS 4
Running head: BUSINESS STATISTICS 1
Deceptive Statistics
The statistics used in passage 3 are shallow and incomprehensible. Although the author states clearly that the number of fashion designers increases by eight percent annually, there is no clarity as to the basis of this increase. The category of fashion in which the new designers specialize is not clearly illustrated, such that the information is vague. In addition, there is no clarity as to how the writer concludes the 46 percent quality increase in fashion magazines. The writer does not provide inclusive criteria of assessment to substantiate the claim of quality increase, thereby making his claim baseless and unconvincing.
There is no clear outline detailing how the writer obtained his figures. When mentioning the 8 percent increase in the number of fashion designers and 46 percent increase in the quality of fashion magazines, there are no comparative figures from the previous years to make side-by-side comparisons and justify the figures. The writer implies that anyone can appear fashionable if he/she likes. I do not think this conclusion in any way guarantees credibility of the figures, since people can still make the choices to be fashionable even if the number of fashion designers does not increase by 8 per cent annually, or if the quality of leading fashion magazines remains the same as implied by the writer.
The writer intends to prove how efficient and easy looking fashionable has become and he uses the statistics to present this position. However, the statistics are insufficient since he fails to mention the increase in the number of fashion stores. The increase in the number of fashion designers and quality of fashion magazines is useless if people do not have information regarding the increase in the number or quality of fashion stores. The writer merely describes a shallow relationship between the price of fashion merchandise and the status it brings but does not really give statistics reflective of an increase or decline in the quality and prices of such fashion merchandise.
Based on the statistics given in the passage, my conclusion would be similar to that of the writer. Anyone can look fashionable if he or she wants to do so. However, this conclusion, being the thesis statement of the entire passage, needs to be given more support. There is a need to provide comparative statistics for the increase in the number of fashion designers and the increase in quality of fashion magazines. Additional information and statistics also need to be provided about factors such as an increase in the number of fashion stores and improvement in the quality of fashion related merchandise.
Although the statistics presented are not so comprehensive, the writer can still use them in his writing to present a stronger case and make the argument in the passage more logical. Apart from saying that an increase in the number of fashion designers creates a wide selection of fashion objects, there is a need to give other strong reasons why this 8 per cent increase will make it easy for anybody who wants to look fashionable to do so more easily. The 46 percent increase in the quality of magazines in the passage looks misplaced. The writer of this passage merely threw the figure into the passage and left it hanging. The author needs to provide the benefits of this increase in order to have a logical conclusion.
DECEPTIVE STATISTICS 3
Running head: DECEPTIVE STATISTICS 1
Statistical Procedure
The study was a cross-sectional study to access blood transfusion reaction in children and the factors that are involved. The data constituted of 57 children, collected from a population of 1226 children, who underwent blood transfusion between January and July 2011. The main aim of the study is to study the prevalence of blood transfusion reactions among children and factors that may be causing the reactions. In this study, prevalence of blood transfusion was the dependent variable the factors under study were the independent variable. Data entry was done in excel sheet and analysis was done using predictive Analytics software. Descriptive and chi square test were done to check for significance difference at 5% level. The results revealed that there was prevalence of blood reaction in relation to age range and type of blood component.
The data was analyzed using non-parametric test, where the independent variable was the prevalence of the blood reaction among the children and factors like age and blood component were the independent variables. Both the dependent and independent variables were measured using nominal data as the level of measurement. For instance, it was observed whether reaction was dependent on age or not. This means that for all the variables the observation on whether or it affected the blood reaction. The sample size was very small and non- random method was used to collect data, therefore non-parametric tests were the most appropriate according to (Pett, 1997).
During analysis, chi-square test generates p-values, which are tested on 0.05 level of significant. When the p-value generated is less than 0.05 (P<0.05), then the factor being tested is significantly significant according to (LeBlanc, 2004). In this study, only two factors under investigation had P<0.05 and this were the only factors that could be associated with blood reaction in children.
References
Pedrosa, A.K, Pinto, F.J & Deus, G.M. (2013, June 20). Blood transfusion reactions in children: associated factors. Pubmed.gov. doi: 10.1016/j.jped.2012.12.009
Pett, M. A. (1997). Nonparametric statistics in health care research: Statistics for small samples and unusual distributions. Thousand Oaks, Calif: Sage.
LeBlanc, D. C. (2004). Statistics: Concepts and applications for science. Boston: Jones and Bartlett.
STATISTICAL PROCEDURE 2
Running Head: STATISTICAL PROCEDURE 1
Impact of Chinese immigrants on Australian culture and society
Chinese immigrant communities exist in almost all countries throughout the world and in Australia they have played a key role towards the Australian culture and society. According to Australian Bureau of Statistics (2012), Attracted by the gold discoveries, the Chinese in the latter half of the fifties rapidly increased in New South Wales, and at the taking of the census in 1861, they numbered nearly 13,000. The Chinese immigrants have impacted the Australian culture and society by affecting its cultural diversity, impacting other religions and influencing the educational standards of the country.
The Chinese immigrants have played an important role in shaping the Australian’s cultural diversity significantly. This has been possible because the Chinese cultural and ethnic origin is clearly distinguishable from the other multicultural societies in Australia. According to Jock (2009), This is partly because Australia has one of the most diverse and, relatively speaking, largest immigration programs of any western nation. As a result, the Chinese immigrants in Australia have impacted the cultural diversity mainly due to their distinctive customs, unique values and habits, cultural achievements and their ways of life. Christina (2007) notes that, Instead, they recast Confucianism, combining it with Chinese Buddhist traditions, as an ethical system embracing the ideal of universal equality. These activities have also been adopted by a significant proportion of the Australian community resulting in a wider multicultural society in Australia.
The Chinese immigrants have impacted the Australian society by making it a multicultural society. According to Encina (2010), The recognition of Australia as a multicultural society and the recent released of the Multicultural Policy have laid the foundation of a more fair and equal society (p. 4). Accordingly, Australia has become a country which is very rich in a wide range of cultures comprising of the Chinese traditions and costumes that presently play a key part in Australians’ daily lives. The Chinese immigrants who are in Australia do not simply enjoy the Australia’s rich multicultural lifestyle, but they also keep their own religions and cultural practices.
According to the Australian Government (2009), eventually, the arrival of people from diverse societies created a cultural diversity that is now an integral part of Australian society and identity.
The Chinese immigrants have socially impacted the religious groups among the Australian society. The social impact of the Chinese immigrants has been particularly in terms of religion among the Chinese. According to Encina (2010), Much of the collective knowledge and expertise of communities is channeled through ethnic community organizations (p. 5). However, while in Australia, most of the immigrants have adopted Christianity other religions. At the same time, the religious practices in Australia such as Buddhism, Taoism and Confucianism have increased significantly due to the increased number of Chinese immigrants.
The Chinese immigrants in Australia have widely impacted on the educational standards in the Australian society. According to Hugo (2005), The high level of skill among permanent and long term migrants from China is apparent (p. 9). The traditional Chinese culture in most cases highly encourages education as a means of securing better employment opportunities. This is especially clear among the Australian Chinese immigrants society that has higher educational levels in comparison to the entire Australian society.
As a result, the Chinese immigrants have contributed significantly in raising the educational standards for the Australian society. In conclusion, the Chinese immigrants in Australia have played a crucial role in shaping the Australian’s cultural diversity and as a result making it a multicultural society. They have also impacted on other religions apart from impacting the educational standards in Australia.
In Text References
Attracted by the gold discoveries, the Chinese in the latter half of the fifties rapidly increased in New South Wales, and at the taking of the census in 1861, they numbered nearly 13,000. – Australian Bureau of Statistics (2012).
This is partly because Australia has one of the most diverse and, relatively speaking, largest immigration programs of any western nation. – Jock (2009).
Instead, they recast Confucianism, combining it with Chinese Buddhist traditions, as an ethical system embracing the ideal of universal equality. – Christina (2007).
The recognition of Australia as a multicultural society and the recent released of the Multicultural Policy have laid the foundation of a more fair and equal society. – Encina (2010, p. 4).
Eventually, the arrival of people from diverse societies created a cultural diversity that is now an integral part of Australian society and identity. – Australian Government (2009).
Much of the collective knowledge and expertise of communities is channeled through ethnic community organizations. – Encina (2010, p. 5).
The high level of skill among permanent and long term migrants from China is apparent. – Hugo (2005, (p. 9).
References
Australian Bureau of Statistics. (2012). The Chinese in Australia. Retrieved from http://www.abs.gov.au/ausstats/abs@.nsf/featurearticlesbytitle/4A6A63F3D85F7770CA2569DE00200137?OpenDocument
Australian Government. (2009). The changing face of early Australia. Retrieved from http://australia.gov.au/about-australia/australian-story/changing-face-of-early-australia
Christina, H. (2007). How the Chinese became Australians. Retrieved from http://www.australianreview.net/digest/2007/11/ho.html
Encina, C. (2010). The Economic, Social and Cultural Impacts of Migration in Australia. http://www.aph.gov.au/parliamentary_business/committees/house_of_representatives_committees?url=mig/multiculturalism/subs/sub111.pdf
Hugo, G. (2005). Chinese Academic Migration to Australia. Retrieved from http://www.cctr.ust.hk/materials/conference/conference/papers/Hugo,GraemeJohn_paper.pdf
Jock, C. (2009). The socio-economic impact of immigration. The Drum. Retrieved from http://www.abc.net.au/unleashed/27036.html
IMPACT OF CHINESE IMMIGRANTS ON AUSTRALIAN 5
Running head: IMPACT OF CHINESE IMMIGRANTS ON AUSTRALIAN 1
Business Studies
Under what circumstances would you suggest that a contracting office request certified cost or pricing data?
The contracting officer should request certified cost or pricing data if the acquisitions being made are above the simplified acquisition threshold. A certified cost and pricing data should be requested if the exemptions to obtaining a cost pricing data applies. An example of such an exemption is when the acquisition is for a commercial item.
Does requesting cost or pricing data help the government or work against the government? How so?
Requesting a cost or pricing data assists all organization to make meaningful decisions. The government in this case is not excluded, and it will benefit from cost or pricing data. This is because the government can benefit and take advantage of quantity of products acquired. It can also spot the discount on the items it is acquiring. This will reduce the government expenditure enabling it to concentrate on other development projects with the amount saved.
What about the contract? Does providing cost or pricing data help or work against the contractor? How so?
It is disadvantageous to the contractors if they provide cost and pricing data to their clients. This is because the process is usually time consuming and increases the costs incurred by the contractor. The contractor needs to assemble a team that will accurately compile all the information and pay for their labor. Providing all the cost or pricing data opens a ground for a litigation process if there are any false claims or statements in the data.
Speculate on why there are so many imitations to obtaining certified cost or pricing data. Explain why you think it is the last item on the list.
The reason why limitation exists in obtaining a certified cost or pricing data is the huge benefits that the government derives from the certified cost or pricing data. The information given by the certificate enables the government to save a lot of the taxpayers’ money, which in turn can be used for other expenditures. The government therefore, limits the acquisition of certified cost or pricing data so that it can maintain its advantage.
BUSINESS STUDIES 2
Running head: BUSINESS STUDIES 1